Improvement of Support Vector Machine and Random Forest Algorithm in Predicting Khorramabad River Flow Uusing Non-uniform De-Noising of data and Simplex Algorithm

Authors

Abstract:

In this study, in order to simulate the monthly flow of the Khorramabad River, the time series of this river was decomposed into three levels using the wavelet of Daubechies-3, during the period of 1955-2014. Based on this, it was found that there is a Non-uniform noise that includes two periods of time in this signal, with the October 2008 border which required that the signal be become non-uniform de-noising. Subsequently, we using two models of support vector machine (ɛ and Nu) and random forest algorithm (RF), the main signal and non-uniform de-noising signal of the river flow were simulated separately. The results validation criteria of the model showed that, with the non-uniform de-noising of the river flow signal, the error of the models dropped ɛ from 5.7 to 3.1, Nu from 5.8 to 3.2 and RF from 5 to 2.9 m3/s. Also, the comparison and testing of the computational error ɛ: ɛD; Nu: NuD; RF: RFD were obtained by using the MGN test (-15, -15, -10.67), which indicates a significant improvement in the performance of the models Used as a result of the non-uniform de-noising signal. In the following, using optimization simplex algorithm in the of three models ɛD, NuD and RFD, the mean flow of the river was very high in all three models.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Prognosis of multiple sclerosis disease using data mining approaches random forest and support vector machine based on genetic algorithm

Background: Multiple sclerosis (MS) is a degenerative inflammatory disease which is most commonly diagnosed by magnetic resonance imaging (MRI). But, since the MRI device uses of a magnetic field, if there are metal objects in the patient's body, it can disrupt the health of the patient, the functioning of the MRI, and distortion in the images. Due to limitations of using MRI device, screening ...

full text

Predicting the cause of kidney stones in patients using random forest, support vector machine and neural network

Background: Today, with the advancement of technology in various fields, the importance of recording data in the field of health is increasing so much that for many diseases around the world, including kidney disease, registration systems have been set up. This is happening in our country and in the future, the number of these systems will increase. The medical data set contains valuable inform...

full text

the survey of the virtual higher education in iran and the ways of its development and improvement

این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.

The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins

Based on the research of predicting β-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predict β-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and the fixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test me...

full text

Predicting and preparing a risk map of rangeland fires using random forest algorithms and support vector machine (Case study: Arak rangelands)

Abstract Background and objectives: Rangeland fires have devastating effects on the landscape, performance and services of rangeland ecosystems. Despite the efforts of experts, decision makers, stakeholders and government agencies in recent decades to reduce the effects of fire, its number and related economic and human losses are increasing worldwide. One of the most important measures to r...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 47

pages  40- 51

publication date 2019-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023